December 29, 2006

Carolyn Schneider
Portland District, U.S. Army Corps of Engineers
Attn: CENWP-PM-E
P.O. Box 2946
Portland, Oregon 97208-2946
Via E-mail: carolyn.b.schneider@usace.army.mil

Re: Notice of Intent to prepare a Draft Environmental Impact Statement for the Lower Willamette River DMMP

Dear Ms. Schneider:

Northwest Environmental Advocates (NWEA) submits the following issues that should be included in the proposed Dredged Material Management Plan (DMMP) and Environmental Impact Statement (EIS) for maintenance dredging in the Willamette River. The list below is by no means NWEA’s view of the only issues that need to be addressed.

The DMMP and EIS should address the following issues both individually and cumulatively:

1. The likelihood and degree to which side-slope adjustment (i.e. underwater erosion and changed location of material in response to dredging and/or changed river hydraulics) in reaction to – both during and after dredging – channel maintenance will take place, its effect on releasing otherwise buried contaminated sediments, and the effects of these releases on human health, fish, and wildlife separately and cumulatively with other projects.

2. The possible detrimental impacts of maintenance dredging on the Remedial Investigation and Feasibility Study (RI/FS) that is being conducted as a part of the Portland Harbor Superfund designation.

3. Sufficiency of options for Best Management Practices (BMP) to minimize the potential for adverse environmental impacts from dredging contaminated sediments. This should include the full range of protocols (e.g., positioning software, bucket speed restrictions, monitoring, inspecting, reporting), equipment for dredging (e.g., dredge type), and equipment for minimizing adverse impacts (e.g., silt fences and turbidity curtains) that have been used, proposed, or considered for use in dredging (for remedial or transportation reasons) other locations where sediment contamination is present.
4. Sufficiency of any dispute resolution approaches with other regulatory agencies to address problems as they arise during dredging including the benefits of alternative approaches not currently being considered by the Corps.

5. The possible detrimental impacts of maintenance dredging on the natural resource damage assessment activities being done in the Portland Harbor.

6. Effect of side-slope adjustment (meaning underwater erosion) on fish and wildlife habitat.

7. The nature of proposed monitoring, inspection, and reporting, and alternatives to the proposed monitoring, inspection, and reporting and their benefits.

8. The relationship of monitored parameters to assessing adverse impacts including, for example, the relationship between turbidity and measuring total suspended solids.

9. Mitigation measures for likely or potential adverse impacts to fish, wildlife, human health, habitat, and the general environment from the project.

10. The meaning of sediment data based on the locations from which the data are derived.

11. The effects of resuspension of contaminated sediments based on where these sediments are dredged both with respect to the effects of the location on the dredging and the localization of contamination.

12. The effect of averaging on the Corps’ analysis of any data where it uses averaging including but not limited to sediment contamination, location of contamination, river flows, sediment transport, core samples, geographic areas, sedimentation rates, etc.

13. The possible impacts on EPA's ability to characterize the Portland Harbor site's risk through sampling, including whether pre-dredging samples will remain relevant after the dredging has resulted in sediments being dispersed and flow in the channel and river have been altered.

14. Alternatives that would mitigate the possible impacts mentioned directly above.

15. Impacts from berth maintenance and deepening associated with the project.

16. The effects of possible changes in flow regulation of the Willamette on any flow-related evaluations.

17. The horizontal and vertical distribution of toxic contaminants in the river sediments in
different areas of the river system and different resuspension rates that vary within the river system.

18. Modeling the contribution of the Willamette to toxic contamination of the Columbia River.

19. Evaluating the cumulative toxic burden and effects on fish and wildlife including but not limited to those species that inhabit both the Columbia and Willamette Rivers.

20. The impacts of Liquid Natural Gas (LNG) facilities and associated LNG shipping on the ability of other shipping to use the Columbia and Willamette Rivers including likely Coast Guard imposed restrictions.

21. The conflict between the goals of the dredging project and the Portland Harbor Superfund project.

22. The failure of past, on-going, and future early clean-up actions to prevent re-contamination of the water and sediments, and their cumulative adverse impacts on the environment.

23. Identification of depositional areas and hot spots within the river system and how they will be impacted by the project and how identification and evaluation of those depositional areas and hot spots will be affected by the project.

24. Whether resuspension of contaminants, in general and from any depositional areas and/or hot spots, will increase surface concentrations of those contaminants elsewhere in the river system and/or create new depositional areas and/or hot spots.

25. How dredging from the project will affect the usefulness of the samples, including invalidating them, taken to date to support the Portland Harbor RI/FS and any other actions related to the Superfund project.

26. The costs and benefits of the no action alternative.

27. Other alternatives to maintenance dredging of shoals in the Willamette River including changing what materials are shipped from the Willamette River ports and berths, waiting until completion of the RI/FS and ROD for the Portland Harbor Superfund site, alternative methods of loading those materials, and any other alternatives that will not adversely affect the Portland Harbor RI/FS.

28. A clear picture of exactly where dredging will take place pursuant to the DMMP/EIS and
how the analysis of the DMMP and EIS will remain valid over the 20-year life of these documents in light of the fact that the river system and information about it, including but not limited to sediment contamination and re-contamination, will change over that same time period.

29. How the public and public agencies will be allowed to comment on the Corps’ proposed maintenance dredging each time it is proposed to take place over the 20-year period in light of changed information about where dredging is proposed and what effects dredging in those specific locations will have on the environment.

31. How this proposed dredging project will affect the timing of the RI/FS and subsequent actions taken on the Portland Harbor site.

32. How this proposed action may affect the EPA’s determination of the boundaries of the Portland Harbor site.

33. How the project will affect the analysis of the data already collected upon which human health advisories have been issued based on that data by the Oregon Department of Health for consumption of fish caught in the Willamette River.

34. The effect of the project on increasing risks to threatened and endangered species and other species that are currently affected by toxic contamination or likely to be affected by toxic contamination. This includes consideration of all risks to species, such as salmon, including habitat losses and elevated levels of pollutants such as temperature.

35. How the project will affect the findings, plans, and actions by the Oregon Department of Environmental Quality concerning the clean-up actions proposed and taken for terrestrial contamination and clean-ups.

36. How the project will affect the timing and findings of the U.S. EPA’s evaluation and clean-up of the Arkema Inc. chemical manufacturing site.

37. How the project’s impacts on resuspending toxic contamination will affect fish, wildlife, human health, and habitat contamination cumulatively along with other actions, such as early clean-up actions considering a less-than-best case scenario that is consistent with the reality of such clean-up actions, such as the 2005 NW Natural tar removal project that released toxic contaminants at levels higher than allowed.
38. How the project may impact the identification of yet additional potential polluters to the Portland Harbor Superfund site, as occurred already in May, 2006.

39. Project impacts on costs for public and private entities associated with impacts to the Portland Harbor Superfund site evaluation and clean-up.

40. Project impacts on the validity of tissue contamination data previously gathered and analyzed for the Portland Harbor Superfund site.

41. Project impacts on the validity of existing data and analysis of the physical dynamics of the Willamette River as they are pertinent to the Portland Harbor Superfund site.

42. Project impacts on the Portland Harbor Superfund site’s Conceptual Site Model.

43. Project impacts on the Portland Harbor Superfund site’s Fate and Transport Model.

44. Project impacts on the Portland Harbor Superfund site’s Food Web Model.

45. Project impacts on the Portland Harbor Superfund site’s Preliminary Identification of Sediment Management Areas.

46. Project impacts on the Portland Harbor Superfund site’s Human Health Risk Evaluation.

47. Project impacts on the Portland Harbor Superfund site’s Ecological Risk Evaluation.

48. Project impacts on not-yet-implemented plans to collect further data in support of the Portland Harbor Superfund RI/FS.

49. The baseline conditions of the Willamette River prior to human development so that changes caused by the project can be evaluated in comparison to the environment to which species adapted, not to current degraded conditions in which they do not thrive, including habitat, flow, pollution, etc.

50. The effect of multiple pollutants on species at jeopardy from the project, such as the combined effects of metals and toxic chemicals and temperature, which affects the impacts of those toxic chemicals on aquatic species.

51. Project impacts on the evaluations developed by the Oregon DEQ concerning the potential for upland sites to affect the Portland Harbor Superfund site contamination and the likelihood that those actions will be sufficient given side-slope adjustment caused by the project.
52. Waiting until further data is collected for the Portland Harbor Superfund site before proceeding with this project.

53. Coordination in specific detail with other agencies in proceeding with this project including how data are and will be shared, how effects from this project will affect other projects such as the RI/FS and evaluation of early clean-up actions, whether and how the Corps will use new data stemming from EPA and DEQ data gathering and analysis actions to alter its dredging project or its analysis of its impacts, or how it will monitor and evaluate the effectiveness of its proposed coordination.

54. How the public will be allowed to comment on any possible alternations in the project plan, should it prove faulty.

55. How the project will affect final remediation, in terms of costs, certainty, timing, protection provided to the environment, etc. of the Portland Harbor Superfund site.

56. Consideration of alternatives such as defining the project to include only remediation dredging and waiting until EPA has identified site-specific data before proceeding with evaluating this project.

57. Consideration of the impacts of dredging turning basins and berths.

58. How Columbia, Mouth of the Columbia River, Willamette, and Snake River operation and maintenance dredging, berth and turning basin dredging, and dredge spoil disposal together cumulatively impact the affected ecosystem and the affected species.

59. The effect of predicted climate-change related alterations to the environment on the project and the cumulative effects of the project and other projects.

60. Risks associated with navigational accidents including environmental and economic issues.

Sincerely,

Nina Bell
Executive Director